Determining the potency and molecular mechanism of action of insurmountable antagonists.
نویسندگان
چکیده
Insurmountable antagonism (maximal response to the agonist depressed) can result from a temporal inequilibrium involving a slow offset orthosteric antagonist or be the result of an allosteric modulation of the receptor. The former mechanism is operative when the antagonist, agonist, and receptors cannot come to proper equilibrium during the time allotted for collection of agonist response (hemi-equilibrium conditions). Allosteric effects (changes in the conformation of the receptor through binding of the allosteric modulator to a separate site) can preclude the agonist-induced production of response, leading to depression of maximal responses. In these cases, the effects on receptor affinity can be observed as well. The first premise of this article is that system-independent estimates of insurmountable antagonist potency can be made with no prior knowledge of molecular mechanism through the use of pA(2) (-log molar concentration of antagonist producing a 2-fold shift of the concentration response curve) measurements The relationship between the pA(2) and antagonist pK(B) (-log equilibrium dissociation constant of the antagonist-receptor complex) is described; the former is an extremely close approximation of the latter in most cases. The second premise is that specially designed experiments are required to differentiate orthosteric versus allosteric mechanisms; simply fitting of data to orthosteric or allosteric theoretical models can lead to ambiguous results. A strategy to determine whether the observed antagonism is orthosteric (agonist and antagonist competing for the same binding site on the receptor) or allosteric in nature is described that involves the detection of the hallmarks of allosteric response, namely saturation and probe dependence of effect.
منابع مشابه
Improvement of Lidocaine Local Anesthetic Action Using Lallemantia royleana Seed Mucilage as an Excipient
Lallemantia royleana (Balangu) is a well known Iranian medicinal plant that its seed mucilage has many applications in modern pharmacology. Plant mucilage traditionally was used as a gel supplement, and natural matrix for sustained release of drugs. But it seems that these compounds are not a simple additive and also have many undiscovered pharmacological properties. In this research, the anest...
متن کاملImprovement of Lidocaine Local Anesthetic Action Using Lallemantia royleana Seed Mucilage as an Excipient
Lallemantia royleana (Balangu) is a well known Iranian medicinal plant that its seed mucilage has many applications in modern pharmacology. Plant mucilage traditionally was used as a gel supplement, and natural matrix for sustained release of drugs. But it seems that these compounds are not a simple additive and also have many undiscovered pharmacological properties. In this research, the anest...
متن کاملThe review of pathogenic mechanism of Aeromonas hydrophila and action of tetracycline against it in aquatic animals
Aeromonas hydrophila is one of common bacterial disease in aquatic animals and its outbreak cause to decrease of aquatic production. Aeromonas disease is due to a protein toxin, aerolysin that exported by Aeromonas hydrophila. This protein toxin forms channels on target cells membrane, disrupting normal activities and cause to destruction and death of them. Aerolysin toxic protein is secreted b...
متن کاملThe effect of dextromethorphan on apomorphine-induced pecking behavior in chick
Dextromethorphan is an NMDA receptor antagonist in the glutamatergic system. Currently, there are some reports showing that the glutamatergic NMDA receptor mechanism stimulates dopamine release from several brain regions. This effect may in part modulate the stereotyped behaviors of dopaminergic system. The purpose of the present study was to determine the interaction between the blockade of NM...
متن کاملCabazitaxel antiproliferative mechanism of action in U87MG human glioblastoma cells: a promising cell-cycle phase-specific radiosensitizer
Introduction: One mechanism of cell cycle manipulation and mitotic catastrophe is arrest at G2/M phase of cell cycle. Cabazitaxel, a mitotic inhibitor agent, is a second-generation semisynthetic taxane. An expected anti-neoplastic effect of Cabazitaxel is cell cycle perturbation and alteration of microtubule dynamics. In contrast to other taxane compounds, Cabazitaxel is a poo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 319 2 شماره
صفحات -
تاریخ انتشار 2006